24 research outputs found

    Motional effects in dynamics of fluorescence of cold atomic ensembles excited by resonance pulse radiation

    Full text link
    We report the investigation of the influence of atomic motion on the fluorescence dynamics of dilute atomic ensemble driven by resonant pulse radiation. We show that even for sub-Doppler temperatures, the motion of atoms can significantly affect the nature of both superradiation and subradiation. We also demonstrate that, in the case of an ensemble of moving scatterers, it is possible to observe the nonmonotonic time dependence of the fluorescence rate. This leads to the fact that, in certain time intervals, increasing in temperature causes not an decrease but increase of the fluorescence intensity in the cone of coherent scattering. We have analyzed the role of the frequency diffusion of secondary radiation as a result of multiple light scattering in an optically dense medium. It is shown that spectrum broadening is the main factor which determines radiation trapping upon resonant excitation. At later time, after the trapping stage, the dynamics is dominated by close pairs of atoms (dimers). The dynamics of the excited states of these dimers has been studied in detail. It is shown that the change in the lifetime of the given adiabatic term of the diatomic quasi-molecule induced by the change in the interatomic distance as well as possible non-adiabatic transitions between sub- and superradiant states caused by atomic motion can lead not to the anticipated weakening of subradiation effect but to its enhancement

    A scaling law for light scattering from dense and cold atomic ensembles

    Full text link
    We calculate the differential cross section of polarized light scattering from a cold and dense atomic ensemble. The regularities in the transformation of the cross section when increasing the size of the atomic ensemble are analyzed numerically. We show that for typical experimental conditions, an approximate scaling law can be obtained. Very good agreement is found in a comparison with experimental data on the size dependence of a dense and cold cloud of 87$Rb atoms.Comment: Submitted to Journal of Modern Optics, Special issue on the Proceedings of the Colloquium on the Physics of Quantum Electronic

    Angular Distribution of Single-Photon Superradiance in a Dilute and Cold Atomic Ensemble

    Get PDF
    On the basis of a quantum microscopic approach we study the dynamics of the afterglow of a dilute Gaussian atomic ensemble excited by pulsed radiation. Taking into account the vector nature of the electromagnetic field we analyze in detail the angular and polarization distribution of single-photon superradiance of such an ensemble. The dependence of the angular distribution of superradiance on the length of the pulse and its carrier frequency as well as on the size and the shape of the atomic clouds is studied. We show that there is substantial dependence of the superradiant emission on the polarization and the direction of fluorescence. We observe essential peculiarities of superradiance in the region of the forward diffraction zone and in the area of the coherent backscattering cone. We demonstrate that there are directions for which the rate of fluorescence is several times more than the decay rate of the timed-Dicke state. We show also that single-photon superradiance can be excited by incoherent excitation when atomic polarization in the ensemble is absent. Besides a quantum microscopic approach, we analyze single-photon superradiance on the basis of the theory of incoherent multiple scattering in optically thick media (random walk theory). In the case of very short resonant and long nonresonant pulses we derive simple analytical expressions for the decay rate of single-photon superradiance for incoherent fluorescence in an arbitrary direction

    Dispersion of the dielectric permittivity of dense and ultracold atomic gases

    Full text link
    On the basis of general theoretical results developed previously in JETP 112, 246 (2011) we analyze the atomic polarization created by weak monochromatic light in an optically thick, dense and cold atomic ensemble. We show that the amplitude of the polarization averaged over a uniform random atomic distribution decreases exponentially beyond the boundary regions. The phase of this polarization increases linearly with increasing penetration into the medium. On these grounds, we determine numerically the wavelength of the light in the dense atomic medium, its extinction coefficient, and the complex refractive index and dielectric constant of the medium. The dispersion of the permittivity is investigated for different atomic densities. It is shown that for dense clouds, the real part of the permittivity is negative in some spectral domains.Comment: 1. Paper is to appear in Physical Review A. 2. Refer also to JETP 112, 246 (2011
    corecore